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Abstract—This paper proposes a strategy to organize metric-
space query processing in multi-core search nodes as understood
in the context of search engines running on clusters of computers.
The strategy is applied in each search node to process all
active queries visiting the node as part of their solution which,
in general, for each query is computed from the contribution
of each search node. When query traffic is high enough, the
proposed strategy assigns one thread to each query and lets
them work in a fully asynchronous manner. When query traffic
is moderate or low, some threads start to idle so they are put to
work on queries being processed by other threads. The strategy
solves the associated synchronization problem among threads
by switching query processing into a bulk-synchronous modeof
operation. This simplifies the dynamic re-organization of threads
and overheads are very small with the advantage that the overall
work-load is evenly distributed across all threads.

I. I NTRODUCTION

Currently multi-core processors such as the Intel Xeon
Quad-core or the Intel Core i7 provide 4 physical CPUs
and 8 logical ones to the programmer that can be used
with C++ programs and libraries such as OpenMP [1]. This
software combination allows one to haveP threads running
in parallel, each one in a different CPU, under a scheme
in which all threads have access to the same main memory.
The challenge is to reduce the total running timeP times
where for some applications, like metric-space databases [19],
[21], this can be tricky to achieve because one has to reduce
resource competition and prevent duplicated calculationsat
low overheads.

In metric-space databases the collection of objects is in-
dexed by using data structures and search algorithms that
employ as a primary tool a function that computes the distance
between any two objects. Queries are objects of the same type
and the index is used to quickly retrieve the objects that are
most similar to a query object in terms of their distances to it.
The distance function is expensive to compute in running time
so the main objective of the index is to reduce the number of
distance evaluations among objects.

This paper proposes an efficient strategy to solve range
queries upon different metric space indexes by usingP threads
in the shared memory model of multi-core processors. The
strategy optimizes the load balance of distance evaluations
among database objects performed by theP threads executing
in parallel, where good load balance is achieved at reduced
competition for shared data and efficient use of all threads.

A. Problem context

Metric-space data structures allow threads to interrupt at
any point the sequence of distance evaluations among objects
that are necessary to completely solve a given query. This is
easily achieved by keeping a small section of memory with
state information that allows a thread to continue with the next
distance evaluation during query processing. Given its high
cost, each distance evaluation operation can be consideredas
a unit of work so that the multi-core query processing strategy
can only focus on properly scheduling those units onto the
concurrent threads to achieve efficient performance.

Another key feature of metric-spaces is that the execution
of a given unit of work can generate a large number of new
units of works that are independent each other in terms of
data dependencies and thereby can be executed in parallel. The
problem is to detect such cases without incurring in overheads
coming from excessive synchronization and look-ups by ways
of lock operations that introduce serialization.

When a search node withP CPUs has less thanP active
queries, the desired aim is to let idling threads help busy
threads by allowing them to steal units of work from the busy
ones. The number of active queries can vary dynamically in
a search node because of at least two reasons: (a) There are
no new queries in the node input message queue at a given
time interval, and (b) some queries are momentarily blocked
waiting for secondary memory operations to be completed.
On the other hand, as soon as there areP active queries being
solved the ideal case is to just let each thread work entirely
on the processing of a single query. This is the optimal case
because no synchronization among threads is necessary since
all accesses to the data structure are read-only.

B. The proposed solution

This paper proposes an efficient strategy to schedule the
above units of work to be processed in parallel byP threads.
When there areP or more active queries in the search node
our strategy processes them by using naive parallelism, namely
each thread completely processes a single query and then
fetches the next one from the input message queue and so on.
This represents a situation in which the query traffic is high. As
soon as the level of active queries decreases belowP we put
the idling threads to work collaboratively in the processing of
the existing queries being solved. Here, therefore, we havethe
above mentioned resource contention situation which requires



synchronization of threads in order to re-schedule the units of
work.

We solve the contention problem by dynamically switching
the computation into a bulk-synchronous one involving allP
threads. In this case the threads work in an asynchronous
manner for a while by processing a certain numberNw of
units of work. In the process, each thread stores in a local
queue the new units of work that it generates and must be
processed by other threads. To ensure good load balance, a
round-robin rule is used to evenly distribute the units of work
onto theP threads.

At some point the limitNw for the total number of units
of work allowed to be processed by all threads is reached
and they are all barrier synchronized. The distance evaluation
calculations are stopped no matter in which sections of the
data structure the threads are at that instant (for instanceif a
thread is traversing the node of a tree, the remaining distance
evaluations required to complete the processing of the node
are delayed until the above asynchronous step is repeated).

After the synchronization point all threads start to scan ina
read-only manner the local queues of all other threads looking
for units of work that are scheduled for them (in a classical
solution based on fully asynchronous parallelism and locksthis
would require locking queues to get or store units of work
which serializes the computation). This scanning process is
performed in parallel by all threads. Once the threads have
obtained their new units of work a last barrier synchronization
is performed and the first asynchronous step is repeated.

We refer to the above two fully asynchronous steps delim-
ited by the barrier synchronization assupersteps since they
resemble the BSP model of parallel computing [20].

The reasons that explain the efficient performance of the
proposed scheduling algorithm are that (a) the distance evalua-
tions performed in the first superstep are perfectly balanced
across theP threads, (b) the cumulative granularity (running
time cost) of them is large in comparison with the com-
putations involved in the second superstep and the cost of
the synchronization barriers, and (c) the scan phase in the
second superstep is performed in perfect parallelism which
further reduces its cost and no read/write conflicts ever take
place since each thread reads other queues and writes its own
local queue to store its new units of work. The trade-off –
represented by the number of units of work allowed to be
processed in the first superstep – is determined experimentally.

Once the query traffic is detected to be high enough, the
thread computations are switched to the fully asynchronous
mode where each thread processes a single query completely
before starting with a new one. This situation can be easily
detected by testing the length of the input query queue of the
node. Detecting the opposite situation of low query traffic is
also simple since threads start to idle.

C. The big picture

In a production system, the overall number of search nodes
can be set in such a way that at normal query traffic there
arep < P active queries in each search node at any time, so
that the fully asynchronous mode with one thread per query
is triggered upon sudden increments in the query traffic.

In addition, each search node can contain a metric-space
cache [12] which is used to prevent frequent queries from
being recomputed. Thus upon the arrival of a new query to the
search node three steps take place: (1) a search on the cache is
performed in order to detect whether an answer for the query
is already there, (2) if not, the query is solved concurrently
(which is the subject of this paper), and (3) once the processing
of the query is completed, the results are stored in the cache
using an eviction policy such as LRU (in a multi-threaded
system this produces a concurrency control issue). Solving
the step 3 can be demanding in running time since distance
evaluations must be performed in order to keep properly
indexed the queries stored in the cache memory. Certainly
this task is less demanding than solving the query against the
large index that indexes all of the database objects stored in
the search node. Nevertheless, R/W concurrency control on
the cache increases overheads.

The issue of concurrent updates on the search node cache is
out of scope in this paper. In a previous work we show that the
bulk-synchronous mode of computing is particularly suitable
for the task of updating the cache index when chunks of
queries are available for insertion [16]. A central part of cache
management is the parallel priority queue used to determine
what entries must be evicted from the cache. This can be
implemented by using a multi-core parallel priority queue as
the one proposed in [16].

The point of this paper is to show that similar mode of
multi-threaded processing is also suitable for the step 2 above
in the sense that we use this mode to (a) generate a new
chunk of queries from the currently active queries in the search
node and (b) processes this chunk in bulk during step 3. This
paper shows that idle threads can dynamically be assigned to
help query processing during step 2 and that their inclusion
effectively reduces running time and produces a new chunk of
queries very quickly. For periods of sudden peaks in query
traffic, the step 3 is not executed and the cache update is
delayed until traffic is restored to normal, to then include the
results from the queries solved during the peak period.

The remaining of the paper is organized as follows. Section
II introduces the metric space concepts and presents related
works. Section III presents the proposed Local, Bulk-Circular
and Bulk-Local multi-core strategies. Section IV shows howto
apply the multi-core scheduling strategies over differentmetric
space indexes. Section V shows the databases used in the
experiments and results obtained by all metric space indexes.
Section V also shows how to combine the Local and Bulk-
Circular strategies to obtain the proposed multi-core query
processing scheduler. Finally Section VI presents conclusions.

II. RELATED WORK

Searching sequentially for all objects which are similar toa
given query object is a problem that has been widely studied
in recent years. A typical query for these applications is the
range query which consists on retrieving all objects within a
certain distance from a given query object. That is, finding
a set ofsimilar objects to a given object. The solutions are
based on the use of a data structure that acts as an index to



speed up the processing of queries. Applications are diverse
such as voice and image recognition, and data mining.

Similarity can be modeled as a metric space as stated by
the following definitions.

Metric Space. A metric space (X, d) is composed of a
universe of valid objectsX and adistance function
d : X × X → R

+ defined among them. The dis-
tance function determines the similarity between two
given objects. This function holds several properties:
strictly positiveness(d(x, y) > 0 and if d(x, y) = 0
then x = y), symmetry (d(x, y) = d(y, x)), and
the triangle inequality(d(x, z) ≤ d(x, y) + d(y, z)).
The finite subsetU ⊂ X with size n = |U|, is
called collection or database and represents the set
of objects where searches are performed.

Range query.Given a metric space(X, d), a finite setU ⊂
X, a queryx ∈ X, and a ranger ∈ R. The results
for queryx with ranger is the sety ∈ U, such that
d(x, y) ≤ r.

The k nearest neighbors (k-NN). Given a metric space
(X, d), a finite setU ⊂ X, a queryx ∈ X andk > 0.
Thek nearest neighbors ofx is the setA in U where
|A| = k andA = {u|d(u, x) < d(y, x)}∀y ∈ U−A.

In this work we focus on range queries becausek-NN
queries can be efficiently solved using range queries [7]. The
distance between two database objects in a high-dimensional
space can be very expensive to compute and in many cases it
is certainly the only relevant performance metric to optimize
(they are even more expensive than the cost of secondary
memory operations). Thus for large and complex databases it
becomes crucial to reduce the number of distance calculations
in order to achieve reasonable running times.

Search methods can be classified in two groups [8]: pivot-
based and clustering-based search methods. Pivot-based meth-
ods select a subset of objects from the collection as pivots,and
the index is built up by computing and storing the distances
from each pivot to the objects of the database. During the
processing of a query, the pre-computed distances are used
to test the triangle inequality to discard objects that in other
case would have been compared against the query. Comparing
two objects involves calculating the distance between them.
The objects that the triangle inequality is not able to discard
are compared against the query. Clustering-based methods
partition the metric space in a set of zones or clusters, eachof
them represented by a cluster center. During query processing,
complete regions are discarded based on the distance from
their centers to the query so that the objects belonging to those
regions are not compared against the query.

There are a number of programming libraries for multi-core
systems like TBB [18] which uses parallel loops to describe
data parallelism, others like IBM X10 [6] and Fortress [3]
which focus on data parallelism but task parallelism is also
supported. In this work we used OpenMP as the programming
library because it has a high level of abstraction and we have
found it to be very efficient. An important advantage is that
resulting codes are not very different from the sequential ones
which is convenient for maintenance purposes. This because
we do not use locks and our only synchronization primitive

are barriers placed at a few points in the program. Another
good candidate to implement our approach is PThreads but in
this case the code becomes quite more populated with library
calls.

There are a number of methods proposed to schedule
tasks over a set of cores. For instance, [14] shows how to
reduce task pool overheads, [2] proposes a scheduler using
information to determine the number of processors assigned
to execute a job. [11] allows stealing tasks from a queue using
a specific data structure. We did not find any related work
in the literature for multi-core systems applied to problems
with the features of metric space indexes where computing
results for a similarity search query requires sharing a great
amount of intermediate results and where some tasks generate
an unpredictable number of new tasks. In the introductory
section of the paper we called these tasks as units of work,
namely each task involves executing a distance calculation
between two objects.

III. M ULTI -CORE SCHEDULING STRATEGIES

In this section we explain the details of the proposed multi-
core scheduling strategies assuming that a search node receives
queries from outside and place them in a lock-protected input
queue IQ which is shared by all threads. Each thread is
assumed to be executed in a different CPU. The metric space
index is stored in the main shared memory. During search node
operation, each thread takes a query from the input queueIQ
and processes it by using one of the following algorithms:

• Local: In this strategy neither data sharing nor period-
ical synchronizations are required because each thread
completely processes a query by using the sequential
algorithm. When a thread becomes idle, namely it has
found all the answers for the query, it locks the input
queueIQ up to remove the next query fromIQ and
process it.

• Bulk-Circular : We define atask requirement as a piece
of data that contains information of the specific job
assigned to a thread such as the next node of the index
to be examined. A task requirement usually involves
calculating the distance between objects and the (much
less costly) application of the triangle inequality. Each
time the algorithm processes a query it may generate a
set of task requirements that are stored in special purposes
queues. To this end, each thread has a private local
requirement queueQPR and a secondary requirement
queueQSR that maintain task requirements to be solved
in the next supersteps. A superstep is a sequence of
tasks executed in parallel by threads and delimited by
the barrier synchronization of all of them. In a given
superstep,QSR is written by the owner thread and read
by the other threads in the next superstep, so there is no
read/write conflict.

The processing of all active queries takes place in
pairs of supersteps that are repeated whilst the search-
node is operating in this bulk-synchronous mode. In the
first superstep, all threads execute the task requirements
stored in theirQPR queues and place new requirements



in their secondary queuesQSR. If a QPR is empty, the
respective thread checks whether there is a query waiting
for service in the search-node input queueIQ and inserts
it in its private local queueQPR. When a thread generates
a new task requirement to be placed inQSR, it assigns a
thread to process it by selecting the thread with the least
amount of assigned task requirements as indicated from
the previous pair of supersteps and its current count. We
also limit the number of distance evaluations performed
by each thread toNw per superstep. The aim is to
properly load balance the computations performed by all
CPUs. The value ofNw is adjusted experimentally for
each index and database. During the second superstep,
the threads copy from all other thread queuesQSR the
task requirements assigned to them into their local queues
QPR. A pseudo-code describing this strategy is presented
in ALGORITHM 1.

• Bulk-Local: Similar to the Bulk-Circular strategy but
the new requirements generated in the first superstep are
assigned to the thread that originally took the query from
the search-node input queueIQ.

Our proposal is usingLocal for high query traffic andBulk-
Circular for moderate to low query traffic and a method for
automatically selecting one of them from the observed query
traffic. The Bulk-Local strategy is included as an intermediate
case for comparison purposes. Also for comparison, though
its comparative performance is very bad, we enhance the
Local strategy with a lock-based strategy in which idle threads
take units of work from threads that are currently processing
queries (we provide the details of this fairly standard approach
in the experiments section).

IV. A DAPTING METRIC-SPACE INDEXES

We have selected five different metric space indexes to
test our multi-core strategies: the EGnat [15], SSS-tree [5],
LC-SSS [17], SSS-Index [4] and M-Tree [9]. For the Local
multi-core strategy we have applied the original sequential
algorithms for each index and for the bulk strategies we have
adapted the algorithms to let them work as sequences of tasks.

The SSS-Index is a table with pivots in the columns and
objects in the rows. Each cell stores the distanced(pi, oj)
between the pivotpi and the objectoj . Pivots are selected
using the SSS [4] strategy. When we apply the bulk strategies
to the SSS-Index the receptionist thread (selected in a circular
way) takes a queryq from the IQ queue and computes
the distance between the query object and all of the pivots.
Then using the triangle inequality it selects a set of candidate
objects that must be compared against the query. For each
object in the candidate set, the receptionist thread generates a
task requirement and place it in theQSR queue. These task
requirements are assigned to the thread with the least load
when the Bulk-Circular strategy is being used. When using
the Bulk-Local strategy, these task requirements are assigned
to the receptionist thread.

The LC-SSS index is composed of a set of clusters where
each onei contains a centerci, a covering radiusri and K
objects from the database. The value ofK is experimentally

Algorithm 1 Searching using the Bulk-Circular Strategy.
ThreadQueryProcessing( pid )

1: while bulkMode = truedo
2: while limit < Nw do
3: if QPR.empty() = true then
4: task← nextQuery( IQ );
5: QPR.insert( task );
6: end if
7: task← nextTask( QPR );
8: taskList← executeTask( task );
9: for each task in taskList do

10: if task.targetThread = pidthen
11: QPR.insert( task );
12: else
13: QSR[pid].insert( task );
14: end if
15: end for
16: end while
17: #pragma omp barrier
18: for i=0; i < P ; i++ do
19: if i != pid then
20: for j=0; j < QSR[i].size(); j++ do
21: if QSR[i][j].targetThread = pidthen
22: QPR.insert(QSR[i][j] )
23: end if
24: end for
25: end if
26: end for
27: #pragma omp barrier // Threads synchronization.
28: QSR[pid].clear();
29: end while

determined to find the value that produces the best perfor-
mance. Inside each cluster we set a table of pivots where the
pivots are selected using the SSS strategy [4]. During query
processing, a receptionist thread (selected in a circular way for
different queries) takes a new queryq from theIQ queue and
computes the query plan [10] which means determining the
clusters that intersect the query ball (q, r). The processing of
each of these clusters is assigned in a circular manner among
the threads. Processing a LC-SSS cluster involves using the
pivots to determine a set of objects that must be compared
against the query. The respective distance evaluations arealso
considered task requirements that must be assigned to the
threads for processing. If the Bulk-Circular strategy is being
used, these task requirements are assigned to different threads
circularly and placed in the localQSR queue by the respective
thread. If the Bulk-Local strategy is being used, the task
requirements are assigned to the receptionist thread.

The EGnat usesm cluster centers in each node of am-
ary tree. Each node of the tree stores a table withm rows
(one for each cluster center in the node) and 2 columns. Cell
(i, 1) stores the minimum distance and cell(i, 2) stores the
maximum distance from the first cluster center in the node to
any object stored in clusteri. These values are used to apply
the triangular inequality to discard tree branches containing



no objects in the query results. The receptionist thread takes
a query fromIQ and compares it with the first object of
the root node. Then it uses the table to select the candidate
branches of the tree where to continue the search by using the
triangle inequality. For each candidate branch we generatea
task requirement which is assigned following the same strategy
of the above described indexes.

The SSS-Tree is similar to the EGnat but the number of
objects stored in each node are determined by the SSS strategy.
In this case the objects of internal nodes are centers of clusters
ci, and we go down through a branch whend(q, ci) − r ≥
rc(ci), where the covering radiusrc(ci) is the distance from
the cluster centerci and the farthest object in the cluster.

The M-tree is built in a bottom-up way and it is composed
by nodes with at mostm objects. When a node is full the
insertion algorithm splits it into two new nodes and generates a
new father node. The query processing is similar to the EGnat.
Than it, the receptionist thread computesd(q, or) for all
objectsor in the root node and obtains the candidate branches
to go down during search. For the internal nodes, the triangle
inequality is used to discard branches. For each candidate
branch to be visited, we have a new task requirement stored
in the QSR queue. These task requirements are processed
by different threads when the Bulk-Circular strategy is being
used or by the receptionist thread when using the Bulk-Local
strategy.

V. EXPERIMENTAL RESULTS

The results were obtained with two different databases
containing objects from two types of metric spaces. We took a
collection of images from a NASA database containing 40,700
images vectors, and we used them as an empirical probability
distribution from which we generated a large collection of
random image objects containing 200,000 objects. We built
each index with the 80% of the objects and the remaining
20% objects were used as queries. In this collection we used
the Euclidean distance to measure the similarity between two
objects with radii 0.47, 0.57 and 0.73. This allowed the query
processing algorithms to retrieve, on the average, 0.01%, 0.1%
and 1% of the database objects respectively. The second
database is a Spanish dictionary with 51,589 words and we
used the Edit distance to measure similarity with radii 1, 2 and
3. On this metric-space we processed 40,000 queries selected
from a sample of the Chilean Web which was taken from the
TODOCL search engine.

The experiments were performed on a machine composed
by two Intel’s Quad-Xeon (2.66 GHz) multi-core processors
with 16 GB of RAM. The thread scheduler provided by the
sched.h library allowed us to assign each of the 8 threads to a
different CPU. We had exclusive access to these cores. In the
following we show results normalized to 1 in order to better
illustrate the comparative performance among the scheduling
strategies using 8 CPUs.

Figure 1 shows the performance of the three multi-core
scheduling strategies for all indexes using the Spanish data
collection (at the top), and the NASA image collection (at the
bottom). In this experiment all queries have arrived at the same

instant to the system, simulating high query traffic. The LC-
SSS and SSS-Index tends to report similar results for all multi-
cores strategies with a low query radius because these indexes
reduce significantly the number of objects compared against
the query. In all cases, the Local strategy reports the best
performance because under a high query traffic all threads are
continuously processing distance evaluations in paralleland
in an asynchronous manner, whereas the bulk strategies have
the additional cost of synchronization and task assignmentto
threads.

In Figure 2 queries arrive at different time intervals so
some threads may get none or very little work to do. Unlike
the results reported in Figure 1, the results obtained by all
indexes in this experiment show that the Bulk-Circular strategy
achieves the best performance. This is because threads that
become idle help others to solve their queries.
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Fig. 1. Performance obtained by all indexes under high querytraffic.

Figure 3 compares the performance of all indexes under
high query traffic for the Spanish and NASA images databases
using the Local scheduling strategy which reported the best
performance for this case. The LC-SSS index achieves the best
performance with radii 1 and 2 using the Spanish collection,
but the SSS-Tree is better for radius 3. Using the NASA
collection we have similar results for the M-tree, LC-SSS, and
SSS-Tree with small radii. With the third radius the M-Tree
achieves the best performance.

Figure 4 compares the performance of all indexes under a
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Fig. 2. Performance obtained by all indexes under low query traffic.

situation of low query traffic using the Bulk-Circular strategy.
This strategy achieves the best performance for this query
traffic. For the Spanish collection the LC-SSS tends to achieve
better performance than the other indexes with radii 1 and
2 because it combines two indexes to reduce the number
of distance evaluations performed per query. For the NASA
collection the LC-SSS and SSS-Index present similar results.

Figure 5 shows the speed-up achieved by all indexes running
over the Spanish database with radius 1. The results show
speed-ups achieved by all three scheduling strategies. Forhigh
query traffic, Figure 5 [top], the results show that all indexes
achieve the highest speed-ups with the Local scheduling
strategy. On the other hand, the Figure 5 [bottom] shows that
the Bulk-Circular strategy achieves the highest speed-upsfor
all indexes when the query traffic is low.

Figure 6 shows the efficiency obtained using the LC-SSS in-
dex with the Local, Bulk-Local and Bulk-Circular scheduling
strategies. The efficiency is measured as(

∑
wi/maxw)/P

where wi is the work-load in each threadi, maxw is the
maximum work-load detected in any of the threads andP
is the number of threads. A value close to 1 indicates a well
load balanced system. These results were obtained under low
query traffic and the Bulk-Circular strategy achieves the best
efficiency.

To understand the results of Figure 6, in Figure 7 we show
the effect of using the Local and Bulk-Circular scheduling
strategies under low query traffic. In this example we assume
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Fig. 3. Performance of all indexes under high query traffic.

that each thread computes only one distance evaluation per unit
of time. At timet1 two queriesq1 andq2 arrive to the system.
q1 requires four distance evaluations (DEs) andq2 requires
three DEs.q3 arrives at timet2 requiring two DEs, thenq4

arrives att4 requiring one DE. This sequence is repeated for
12 queries (meaning att5 two new queries arrive requiring 4
and 3 DEs each, att6 one query arrives requiring 2 DEs and so
on). The left table shows the work-load assigned to each thread
when queries are assigned in a circular manner when using the
Local strategy. The right table shows the work-load when the
queries are assigned to the least load thread. In both cases we
can see the effect produced by the Local scheduling strategy
and how the queries are delayed reducing the throughput and
increasing the query response time for low query traffic.

Figure 8 shows the performance of the LC-SSS using the
scheduling strategies Local and Bulk-Circular, and compares
them with a Lock based strategy. In the Lock strategy, each
query is processed as in the Local strategy but when a thread
becomes idle, it search into the other thread’sQSR queues
for new task requirements and place them in its local queue
QPR. In order to steal a task requirement, the thread selects
the thread with the largest number of task requirements, and
then it steals half of them. This strategy uses locks to prevent
reads/write conflicts over the threads queues. The results shows
that in a low query traffic situation, the Bulk-Circular strategy
achieves the best performance. The Lock strategy incurs in
a high overhead caused by the locks mechanism. When the
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Fig. 4. Performance of all indexes under low query traffic.

query traffic is high and each thread is continuously solving
different queries, the Lock strategy achieves the same perfor-
mance than the Local strategy. This is because no stealing
operations are performed and all threads are always busy.

A. Switching between strategies

The Bulk-Circular scheduling strategy achieves good per-
formance when the query traffic is low because the number of
distance evaluations required by a query are distributed among
all threads keeping them busy all the time. On the other hand,
when the query traffic is high it is more convenient to assign
a unique query to a single thread avoiding sharing local data.
Therefore we have implemented a hybrid scheduling strategy
that is able to change from one type of query processing to the
another by measuring the number of queries requiring service.

Figure 9 compares the throughput obtained by the Bulk-
Circular, Local and the hybrid scheduling strategies when the
query traffic changes along time. The results show that the
hybrid strategy is able to set itself in the mode that achieves
the best performance.

When the number of queriesQp waiting to be completed
in the processor satisfiesQp ≥ P ∗ Qmax, whereP is the
number of threads andQmax is the maximum number of
queries allowed to be processes in the bulk-synchronous mode,
the hybrid strategy changes its operation mode to the Local
scheduling strategy. After a time, when the number of tasks
assigned to each thread is low enough, the hybrid strategy
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changes to the Bulk-Circular operation mode. Figure 9 shows
that the hybrid strategy achieves the highest query throughput
especially when the query traffic changes from moderate to
high.

VI. CONCLUSIONS

In this paper we have proposed a scheduling strategy
designed to improve query throughput in a multi-core server
for metric-space databases. Our proposal combines fully asyn-
chronous multi-threaded processing of queries with bulk-
synchronous multi-threaded query processing in a shared
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memory setting. The switching between the two modes is
made by a simple rule which acts in accordance with the
observed query traffic. The comprehensive experimental study
presented in the paper, which includes data structures of
several types, shows that the proposed scheme is efficient
in practice and it is independent of the particular index
data structure. Few modifications to the query processing
regime upon these data structures are necessary to make the
scheduling strategy work efficiently on them. As explained in
the introductory section of the paper, the bulk-synchronous
scheduling strategy is devised to work in tandem with the
cache update phase at each multi-core search node. We refer
to an application cache in charge of keeping in main memory
the answers to most frequent user queries. Previous work [16]
has shown that it is more efficient to update the cache by using
chunks of queries rather than single concurrent queries in order
to reduce overheads and the proposed scheduling strategy
does exactly that, namely it produces chunks of queries in
an efficient manner which can be then cached also efficiently.
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