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Abstract—This paper proposes a strategy to organize metric- A. Problem context

space query processing in multi-core search nodes as undered - .
in the context of search engines running on clusters of compers. Metric-space data structures allow threads to interrupt at

The strategy is applied in each search node to process all@ny point the sequence of distance evaluations among sebject
active queries visiting the node as part of their solution wich, that are necessary to completely solve a given query. This is
in general, for each query is computed from the contribution easily achieved by keeping a small section of memory with
8‘;0‘;3‘;2 dses?rgtggr;oiié i\é\:ge';n%”fr?rfeggﬁt'g gag‘k']gguee';;"‘g;‘a trgfsstate information that allows a thread to continue with taetn
them work in a fully asynchronous manner. When query traffic distance evgluatlon during _query pro_cessmg. Given !t$1 hig
is moderate or low, some threads start to idle so they are putot COSt, each distance evaluation operation can be considered
work on queries being processed by other threads. The straiy @ unit of work so that the multi-core query processing sgte
solves the associated synchronization problem among thrda can only focus on properly scheduling those units onto the
by switching query processing into a bulk-synchronous modef  concyrrent threads to achieve efficient performance.
operation. This simplifies the dynamic re-organization of hreads Another kev feat ; tric- is that th ti
and overheads are very small with the advantage that the oveil no. er eY €ature ol metric-spaces 1S that the execution
work-load is evenly distributed across all threads. of a given unit of work can generate a large number of new
units of works that are independent each other in terms of
data dependencies and thereby can be executed in parakel. T
I. INTRODUCTION problem is to detect such cases without incurring in ovethea

c | i h h | coming from excessive synchronization and look-ups by ways
urrently multi-core processors such as the Intel Xe lock operations that introduce serialization.

Quad-core or the Intel Core i7 provide 4 physical CPUs When a search node witF CPUs has less thaf active

ar_1d 8 logical ones to t_he programmer that can be us, geries, the desired aim is to let idling threads help busy
with Ct+ programs and libraries such as OpenMP [1]'_ Th reads by allowing them to steal units of work from the busy
§oftware combination QHOWS one to has threads running ones. The number of active queries can vary dynamically in
n parallel, each one in a different CPU, under a SChen&esearch node because of at least two reasons: (a) There are
in which all thrgads have access to the same main memqry. o queries in the node input message queue at a given
The challenge is to_red_uce t_he total. running tifetimes interval, and (b) some queries are momentarily blocked
where f_or Some app lications, |_|ke metric-space databass [ waiting for secondary memory operations to be completed.
[21], this can be _tr_|cky fo achieve becau_se one has to_red%‘ﬁ the other hand, as soon as there Rractive queries being
resource competition and prevent duplicated calculatiins oo the ideal case is to just let each thread work entirely
low overheads. on the processing of a single query. This is the optimal case

In metric-space databases the collection of objects iS ifaca,se no synchronization among threads is necessagy sinc
dexed by using data structures and search algorithms that, . asses to the data structure are read-only
employ as a primary tool a function that computes the digtanc

between any two objects. Queries are objects of the same type )

and the index is used to quickly retrieve the objects that The proposed solution

most similar to a query object in terms of their distanced.to i This paper proposes an efficient strategy to schedule the

The distance function is expensive to compute in running tinabove units of work to be processed in parallel®yhreads.

so the main objective of the index is to reduce the number Wthen there are”® or more active queries in the search node

distance evaluations among objects. our strategy processes them by using naive parallelismglyam
This paper proposes an efficient strategy to solve rangach thread completely processes a single query and then

gueries upon different metric space indexes by ugirtreads fetches the next one from the input message queue and so on.

in the shared memory model of multi-core processors. THéis represents a situation in which the query traffic is high

strategy optimizes the load balance of distance evalustioon as the level of active queries decreases bétome put

among database objects performed by khtlreads executing the idling threads to work collaboratively in the procegsaf

in parallel, where good load balance is achieved at reduch@ existing queries being solved. Here, therefore, we Have

competition for shared data and efficient use of all threadsabove mentioned resource contention situation which regqui



synchronization of threads in order to re-schedule theswfit  In addition, each search node can contain a metric-space
work. cache [12] which is used to prevent frequent queries from
We solve the contention problem by dynamically switchingeing recomputed. Thus upon the arrival of a new query to the
the computation into a bulk-synchronous one involvingzall search node three steps take place: (1) a search on the sache i
threads. In this case the threads work in an asynchrongusformed in order to detect whether an answer for the query
manner for a while by processing a certain numbgy of is already there, (2) if not, the query is solved concursentl
units of work. In the process, each thread stores in a lodgathich is the subject of this paper), and (3) once the pracgss
queue the new units of work that it generates and must bethe query is completed, the results are stored in the cache
processed by other threads. To ensure good load balancesimg an eviction policy such as LRU (in a multi-threaded
round-robin rule is used to evenly distribute the units ofkvo system this produces a concurrency control issue). Solving
onto theP threads. the step 3 can be demanding in running time since distance
At some point the limitV,, for the total number of units evaluations must be performed in order to keep properly
of work allowed to be processed by all threads is reach@wtlexed the queries stored in the cache memory. Certainly
and they are all barrier synchronized. The distance evaluatthis task is less demanding than solving the query agaiest th
calculations are stopped no matter in which sections of therge index that indexes all of the database objects staored i
data structure the threads are at that instant (for instédrece the search node. Nevertheless, R/W concurrency control on
thread is traversing the node of a tree, the remaining distarthe cache increases overheads.
evaluations required to complete the processing of the noderhe issue of concurrent updates on the search node cache is
are delayed until the above asynchronous step is repeatedput of scope in this paper. In a previous work we show that the
After the synchronization point all threads start to scaa inbulk-synchronous mode of computing is particularly sugab
read-only manner the local queues of all other threads fapkifor the task of updating the cache index when chunks of
for units of work that are scheduled for them (in a classicgueries are available for insertion [16]. A central part atloe
solution based on fully asynchronous parallelism and Itisiss management is the parallel priority queue used to determine
would require locking queues to get or store units of worlhat entries must be evicted from the cache. This can be
which serializes the computation). This scanning procsssiinplemented by using a multi-core parallel priority quese a
performed in parallel by all threads. Once the threads haptg one proposed in [16].
obtained their new units of work a last barrier synchron@mat The point of this paper is to show that similar mode of

is performed and the first asynchronous step is repeated. multi-threaded processing is also suitable for the stepaab
We refer to the above two fully asynchronous steps delinfy the sense that we use this mode to (a) generate a new
ited by the barrier synchronization aspersteps since they chunk of queries from the currently active queries in thecea
resemble the BSP model of parallel computing [20]. node and (b) processes this chunk in bulk during step 3. This
The reasons that explain the efficient performance of th@per shows that idle threads can dynamically be assigned to
proposed scheduling algorithm are that (a) the distande@va help query processing during step 2 and that their inclusion
tions performed in the first superstep are perfectly baldncgffectively reduces running time and produces a new chunk of
across theP threads, (b) the cumulative granularity (runningueries very quickly. For periods of sudden peaks in query
time cost) of them is large in comparison with the comyaffic, the step 3 is not executed and the cache update is
putations involved in the second superstep and the costqflayed until traffic is restored to normal, to then include t
the synchronization barriers, and (c) the scan phase in f#@ults from the queries solved during the peak period.
second superstep is performed in perfect parallelism whichthe remaining of the paper is organized as follows. Section
further reduces its cost and no read/write conflicts evee talf introduces the metric space concepts and presents delate
place since each thread reads other queues and writes its Qyks. Section 1l presents the proposed Local, Bulk-Qacu
local queue to store its new units of work. The trade-off gnq Bulk-Local multi-core strategies. Section IV shows tiow
represented by the number of units of work allowed to bgyply the multi-core scheduling strategies over differaatric
processed in the first superstep — is determined experithentaspace indexes. Section V shows the databases used in the
Once the query traffic is detected to be high enough, taQperiments and results obtained by all metric space irdexe
thread computations are switched to the fully asynchronodgction v also shows how to combine the Local and Bulk-
mode where each thread processes a single query compleggitular strategies to obtain the proposed multi-core yuer

before starting with a new one. This situation can be eas{{ocessing scheduler. Finally Section VI presents corarss
detected by testing the length of the input query queue of the

node. Detecting the opposite situation of low query traffic i

also simple since threads start to idle. Il. RELATED WORK
o Searching sequentially for all objects which are similaato
C. The big picture given query object is a problem that has been widely studied

In a production system, the overall number of search nodesrecent years. A typical query for these applications & th
can be set in such a way that at normal query traffic therange query which consists on retrieving all objects within a
arep < P active queries in each search node at any time, sertain distance from a given query object. That is, finding
that the fully asynchronous mode with one thread per queayset ofsimilar objects to a given object. The solutions are
is triggered upon sudden increments in the query traffic. based on the use of a data structure that acts as an index to



speed up the processing of queries. Applications are diveese barriers placed at a few points in the program. Another
such as voice and image recognition, and data mining.  good candidate to implement our approach is PThreads but in
Similarity can be modeled as a metric space as stated thys case the code becomes quite more populated with library
the following definitions. calls.
Metric Space A metric space (X,d) is composed of a There are a number of methods proposed to schedule
universe of valid objectX and adistance function tasks over a set of cores. For instance, [14] shows how to
d : X x X — R* defined among them. The dis-reduce task pool overheads, [2] proposes a scheduler using
tance function determines the similarity between twmformation to determine the number of processors assigned
given objects. This function holds several propertieso execute a job. [11] allows stealing tasks from a queuegusin
strictly positivenessd(z,y) > 0 and ifd(z,y) = 0 a specific data structure. We did not find any related work
then x = y), symmetry {(z,y) = d(y,x)), and in the literature for multi-core systems applied to probdem
the triangle inequalitfd(zx, z) < d(z,y) + d(y,z)). with the features of metric space indexes where computing

The finite subsefU C X with size n = |U|, is results for a similarity search query requires sharing afgre
called collection or database and represents the setount of intermediate results and where some tasks generat
of objects where searches are performed. an unpredictable number of new tasks. In the introductory

Range query. Given a metric spac€X, d), a finite setU ¢  section of the paper we called these tasks as units of work,
X, a queryz € X, and a range- € R. The results namely each task involves executing a distance calculation
for queryz with ranger is the sety € U, such that between two objects.

d(z,y) <.

The k nearest r_1e.|ghbors E-NN). Given a metric space . M ULTI-CORE SCHEDULING STRATEGIES
(X, d), afinite setU C X, a queryz € X andk > 0. ) ] ] ] )
The k nearest neighbors afis the setd in U where In this section we explain the details of the proposed multi-
|A| = k and A = {u|d(u,z) < d(y,z)}Vy € U— A. core scheduling strategies assuming that a search nodes®ce

In this work we focus on range queries becaussN gueries from (_)utsi_de and place them in a Iock-protectedtinpu
queries can be efficiently solved using range queries [7& TAUeUeIQ which is shared by all threads. Each thread is
distance between two database objects in a high-dimersighgsUmed to be executed in a different CPU. The metric space
space can be very expensive to compute and in many casd8dex is stored in the main shared memory. Durl_ng search node
is certainly the only relevant performance metric to optieni OPeration, each thread takes a query from the input quigue
(they are even more expensive than the cost of second@Rf Processes it by using one of the following algorithms:
memory operations). Thus for large and complex databases i¢ Local: In this strategy neither data sharing nor period-
becomes crucial to reduce the number of distance calcoktio  ical synchronizations are required because each thread
in order to achieve reasonable running times. completely processes a query by using the sequential

Search methods can be classified in two groups [8]: pivot- algorithm. When a thread becomes idle, namely it has
based and clustering-based search methods. Pivot-baskd me found all the answers for the query, it locks the input
ods select a subset of objects from the collection as piaoits, queuelQ up to remove the next query from@ and
the index is built up by computing and storing the distances process it.
from each pivot to the objects of the database. During thee Bulk-Circular : We define atask requirement as a piece
processing of a query, the pre-computed distances are used of data that contains information of the specific job
to test the triangle inequality to discard objects that ineot assigned to a thread such as the next node of the index
case would have been compared against the query. Comparing to be examined. A task requirement usually involves
two objects involves calculating the distance between them calculating the distance between objects and the (much
The objects that the triangle inequality is not able to didca less costly) application of the triangle inequality. Each
are compared against the query. Clustering-based methods time the algorithm processes a query it may generate a
partition the metric space in a set of zones or clusters, ebich set of task requirements that are stored in special purposes
them represented by a cluster center. During query prawgssi queues. To this end, each thread has a private local
complete regions are discarded based on the distance from requirement queu&)pr and a secondary requirement
their centers to the query so that the objects belongingaseth queue@sr that maintain task requirements to be solved
regions are not compared against the query. in the next supersteps. A superstep is a sequence of

There are a number of programming libraries for multi-core  tasks executed in parallel by threads and delimited by
systems like TBB [18] which uses parallel loops to describe the barrier synchronization of all of them. In a given
data parallelism, others like IBM X10 [6] and Fortress [3]  superstep@sgr is written by the owner thread and read
which focus on data parallelism but task parallelism is also by the other threads in the next superstep, so there is no
supported. In this work we used OpenMP as the programming read/write conflict.
library because it has a high level of abstraction and we have The processing of all active queries takes place in
found it to be very efficient. An important advantage is that pairs of supersteps that are repeated whilst the search-
resulting codes are not very different from the sequentialso node is operating in this bulk-synchronous mode. In the
which is convenient for maintenance purposes. This because first superstep, all threads execute the task requirements
we do not use locks and our only synchronization primitive  stored in theirQ pr queues and place new requirements



in their Secondary queu(@SR_ If a QPR is empty’ the Algorlthm 1 SearChing USing the Bulk-Circular Strategy.

respective thread checks whether there is a query waitihjreadQueryProcessing( pid )

for service in the search-node input qudidg and inserts
it in its private local queu€) pr. When a thread generates 2:
a new task requirement to be placedin g, it assigns a 3
thread to process it by selecting the thread with the least:
amount of assigned task requirements as indicated from
the previous pair of supersteps and its current count. \We:
also limit the number of distance evaluations performed:
by each thread taV, per superstep. The aim is to s:
properly load balance the computations performed by alp:
CPUs. The value ofV,, is adjusted experimentally for 10:
each index and database. During the second superstep,
the threads copy from all other thread quedgsr the 12
task requirements assigned to them into their local queuges
Qprr- A pseudo-code describing this strategy is presentad:
in ALGORITHM 1. 15:
Bulk-Local: Similar to the Bulk-Circular strategy but 16:
the new requirements generated in the first superstep are
assigned to the thread that originally took the query fronps:

1: while bulkMode = truedo

while limit < N,, do
if Qpr.empty() = true then
task <+ nextQuery( IQ );
Qpg.insert( task );
end if
task «— nextTask( Qpr );
taskList«— executeTask( task );
for each taskin taskList do
if task.targetThread = pidhen
Qpr.insert( task );
else
Qsr[pid].insert( task );
end if
end for
end while
#pragma omp barrier
for i=0; i < P; i++ do

the search-node input queué). 19:
Our proposal is usindg ocal for high query traffic andBulk-  20:
Circular for moderate to low query traffic and a method for21:
automatically selecting one of them from the observed quepy:

if ¢ !=pid then
for j=0; j < Qsrli].size(); j++ do
if Qsrli][j]targetThread = pidhen
Qrr.nsert(Qsglillj])

traffic. The Bulk-Local strategy is included as an internageli 23: end if
case for comparison purposes. Also for comparison, thougt end for
its comparative performance is very bad, we enhance t@g end if
Local strategy with a lock-based strategy in which idle siie 26:  end for

take units of work from threads that are currently procegsire7: ~ #pragma omp barrier // Threads synchronization.
queries (we provide the details of this fairly standard apph 28:  Qsr[pid].clear();
in the experiments section). 29: end while

IV. ADAPTING METRIC-SPACE INDEXES

We have selected five different metric space indexes @gtermined to find the value that produces the best perfor-
test our multi-core strategies: the EGnat [15], SSS-trde [snance. Inside each cluster we set a table of pivots where the
LC-SSS [17], SSS-Index [4] and M-Tree [9]. For the Locapivots are selected using the SSS strategy [4]. During query
multi-core strategy we have applied the original sequéntidrocessing, a receptionist thread (selected in a circuagrfor
algorithms for each index and for the bulk strategies we hadéferent queries) takes a new queryrom the /@ queue and
adapted the algorithms to let them work as sequences of tagi@nputes the query plan [10] which means determining the

The SSS-Index is a table with pivots in the columns arfdusters that intersect the query bajl ). The processing of
objects in the rows. Each cell stores the distad¢g;,0;) ©€ach of these clusters is assigned in a circular manner among
between the pivop; and the objeci;. Pivots are selected the threads. Processing a LC-SSS cluster involves using the
using the SSS [4] strategy. When we apply the bulk strategléiés’OtS to determine a set of objects that must be compared
to the SSS-Index the receptionist thread (selected in alairc @gainst the query. The respective distance evaluationalsoe
way) takes a query; from the IQ queue and Computesconsidered task requirements that must be assigned to the
the distance between the query object and all of the pivotgreads for processing. If the Bulk-Circular strategy isnge
Then using the triangle inequality it selects a set of caagid Used, these task requirements are assigned to differesatdir
objects that must be compared against the query. For e&di§ularly and placed in the loc&)sr queue by the respective
object in the candidate set, the receptionist thread geeseea thread. If the Bulk-Local strategy is being used, the task
task requirement and place it in tligsr queue. These task requirements are assigned to the receptionist thread.
requirements are assigned to the thread with the least load’he EGnat usesn cluster centers in each node ofna
when the Bulk-Circular strategy is being used. When usirggy tree. Each node of the tree stores a table withrows
the Bulk-Local strategy, these task requirements are aeadig (one for each cluster center in the node) and 2 columns. Cell
to the receptionist thread. (i,1) stores the minimum distance and céll2) stores the

The LC-SSS index is composed of a set of clusters whermeximum distance from the first cluster center in the node to
each one contains a centet;, a covering radius; and X any object stored in clustér These values are used to apply
objects from the database. The valueFofis experimentally the triangular inequality to discard tree branches coirtgin



no objects in the query results. The receptionist threadstaknstant to the system, simulating high query traffic. The LC-
a query fromI@Q and compares it with the first object of SSS and SSS-Index tends to report similar results for altimul
the root node. Then it uses the table to select the candidetees strategies with a low query radius because thesedadex
branches of the tree where to continue the search by using thduce significantly the number of objects compared against
triangle inequality. For each candidate branch we generat¢he query. In all cases, the Local strategy reports the best
task requirement which is assigned following the sameesiyat performance because under a high query traffic all threals ar
of the above described indexes. continuously processing distance evaluations in paraltel
The SSS-Tree is similar to the EGnat but the number of an asynchronous manner, whereas the bulk strategies have
objects stored in each node are determined by the SSS strattite additional cost of synchronization and task assignrieent
In this case the objects of internal nodes are centers ofeckis threads.
¢i, and we go down through a branch whéfy,c;) — r > In Figure 2 queries arrive at different time intervals so
re(c;), where the covering radius:(c;) is the distance from some threads may get none or very little work to do. Unlike
the cluster center; and the farthest object in the cluster.  the results reported in Figure 1, the results obtained by all
The M-tree is built in a bottom-up way and it is composethdexes in this experiment show that the Bulk-Circulartsggt
by nodes with at mostn objects. When a node is full theachieves the best performance. This is because threads that
insertion algorithm splits it into two new nodes and geresa become idle help others to solve their queries.
new father node. The query processing is similar to the EGnat
Than it, the receptionist thread computégy,o,) for all

objectso,. in the root node and obtains the candidate branches High Query Traffic, Spanish

to go down during search. For the internal nodes, the trangl 2 & ! ‘ ‘
A 0 i 9 E k[ SSS-index 4% Bulk-Local ~-*-—
inequality is used to discard branches. For each candidate i g6 Bulk-Circular o ]
branch to be visited, we have a new task requirement stored 2 8:(‘2)1 Local ---e--
in the Qsr queue. These task requirements are processed E .
. . . . SSS-Tree b LC-SSS

by different threads when the Bulk-Circular strategy isnigei & 0% - s
used or by the receptionist thread when using the Bulk-Local K §:§ s P
strategy. N 70

g 1 | EGnat ! M-Tree.

S 08 e

V. EXPERIMENTAL RESULTS S §;§ o
The results were obtained with two different databases 0 1 2 3 1 2 3

containing objects from two types of metric spaces. We took a Radii

collection of images from a NASA database containing 40,700
images vectors, and we used them as an empirical probability High Query Traffic, Nasa images
distribution from which we generated a large collection of

random image objects containing 200,000 objects. We built ,GE) os [ 'SS -lndeX“,,,,,“ﬁ Bulk-Local -
each index with the 80% of the objects and the remaining ', §:§ i BU'k'C'fgc'glr e
20% objects were used as queries. In this collection we used £ 0
the Euclidean distance to measure the similarity betweentw S 1 | SSS-Tree g LC-SSS. ¢
objects with radii 0.47, 0.57 and 0.73. This allowed the guer £ 88 v e

) ! . °o Q4
processing algorithms to retrieve, on the average, 0.01280 g oz
and 1% of the database objects respectively. The second G EGnat | M-Tree
database is a Spanish dictionary with 51,589 words and we % 8'% - -
used the Edit distance to measure similarity with radii 1n& a 4 81421 N
3. On this metric-space we processed 40,000 queries stlecte 0

from a sample of the Chilean Web which was taken from the 001 01 1 001 01 1
TODOCL search engine. Percentage of Database Retrieved
The experiments were performed on a machine composég 1. Performance obtained by all indexes under high qtrefic.
by two Intel's Quad-Xeon (2.66 GHz) multi-core processors
with 16 GB of RAM. The thread scheduler provided by the Figure 3 compares the performance of all indexes under
sched.h library allowed us to assign each of the 8 threads tokagh query traffic for the Spanish and NASA images databases
different CPU. We had exclusive access to these cores. In theng the Local scheduling strategy which reported the best
following we show results normalized to 1 in order to bettguerformance for this case. The LC-SSS index achieves the bes
illustrate the comparative performance among the schagluliperformance with radii 1 and 2 using the Spanish collection,
strategies using 8 CPUs. but the SSS-Tree is better for radius 3. Using the NASA
Figure 1 shows the performance of the three multi-comdllection we have similar results for the M-tree, LC-SS&] a
scheduling strategies for all indexes using the Spanish d&SS-Tree with small radii. With the third radius the M-Tree
collection (at the top), and the NASA image collection (a thachieves the best performance.
bottom). In this experiment all queries have arrived at iraes  Figure 4 compares the performance of all indexes under a



Low Query Traffic, Spanish Local Strategy, High Query Traffic, Spanish
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Fig. 2. Performance obtained by all indexes under low queffic. Fig. 3. Performance of all indexes under high query traffic.

situation of low query traffic using the Bulk-Circular segy. that each thread computes only one distance evaluatiomiter u
This strategy achieves the best performance for this quejytime. At timet; two queries;; andg, arrive to the system.
traffic. For the Spanish collection the LC-SSS tends to avehieq1 requires four distance evaluations (DEs) apdrequires
better performance than the other indexes with radii 1 afgree DEs.q; arrives at timet, requiring two DEs, theny,
2 because it combines two indexes to reduce the numBgfives att, requiring one DE. This sequence is repeated for
of distance evaluations performed per query. For the NASfp queries (meaning at two new queries arrive requiring 4
collection the LC-SSS and SSS-Index present similar resulhng 3 DEs each, at one query arrives requiring 2 DEs and so
Figure 5 shows the speed-up achieved by all indexes runnimg). The left table shows the work-load assigned to eaclathre
over the Spanish database with radius 1. The results shawen queries are assigned in a circular manner when using the
speed-ups achieved by all three scheduling strategiesiflor Local strategy. The right table shows the work-load when the
query traffic, Figure 5 [top], the results show that all index queries are assigned to the least load thread. In both cases w
achieve the highest speed-ups with the Local scheduliogn see the effect produced by the Local scheduling strategy
strategy. On the other hand, the Figure 5 [bottom] shows thatd how the queries are delayed reducing the throughput and
the Bulk-Circular strategy achieves the highest speedfaps increasing the query response time for low query traffic.

all indexes when the query traffic is low. Figure 8 shows the performance of the LC-SSS using the

Figure 6 shows the efficiency obtained using the LC-SSS ischeduling strategies Local and Bulk-Circular, and corepar
dex with the Local, Bulk-Local and Bulk-Circular sched@in them with a Lock based strategy. In the Lock strategy, each
strategies. The efficiency is measured (&S w;/maz.,)/P  query is processed as in the Local strategy but when a thread
where w; is the work-load in each thread maz,, is the pecomes idle, it search into the other threa@sr queues
maximum work-load detected in any of the threads dhd for new task requirements and place them in its local queue
is the number of threads. A value close to 1 indicates a WQ'PR- In order to steal a task requirement, the thread selects
load balanced system. These results were obtained under {a¢ thread with the largest number of task requirements, and
query traffic and the Bulk-Circular strategy achieves thstbehen it steals half of them. This strategy uses locks to preve
efficiency. reads/write conflicts over the threads queues. The resuiss

To understand the results of Figure 6, in Figure 7 we shawat in a low query traffic situation, the Bulk-Circular d&gy
the effect of using the Local and Bulk-Circular schedulingchieves the best performance. The Lock strategy incurs in
strategies under low query traffic. In this example we assuraehigh overhead caused by the locks mechanism. When the
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Fig. 4. Performance of all indexes under low query traffic. Fig. 5. Speed-Up obtained by all indexes with radius 1, urdeigh query

traffic [top] and low query traffic [bottom].
query traffic is high and each thread is continuously solving

different queries, the Lock strategy achieves the sameperf ' Bulk-Circular —a
mance than the Local strategy. This is because no stealing Bulk-Local -
operations are performed and all threads are always busy. Local ---e--
as

A. Switching between strategies g 1y e e

The Bulk-Circular scheduling strategy achieves good per- é’ 081 . e
formance when the query traffic is low because the number of ! 0.6 f —— 1
distance evaluations required by a query are distributezhgm 0.4 r i 1
all threads keeping them busy all the time. On the other hand, 0| ~ Seanish Nasa ]
when the query traffic is high it is more convenient to assign ‘ ‘ ‘ ‘ ‘ ‘
a unique query to a single thread avoiding sharing local.data 1 2 3 001 01 1

Therefore we have implemented a hybrid scheduling strategy

that is able to change from one type of query processing to thg 6- Efficiency achieved by the Local, Bulk-Circular andliBLocal

another by measuring the number of queries requiring ®@rvic eduling strategies using the LC-SSS index under lowyguiaffic
Figure 9 compares the throughput obtained by the Bulk;

: . . . changes to the Bulk-Circular operation mode. Figure 9 shows
Circular, Local and the hybrid scheduling strategies when t : . :
query traffic changes along time. The results show that tﬁhe"jlt the hybrid strategy achieves the highest query thrpugh

hybrid strategy is able to set itself in the mode that acm.evespemally when the query traffic changes from moderate to

the best performance. ﬁ'gh'
When the number of querigg, waiting to be completed

in the processor satisfie@@, > P % Qmaqz, Where P is the
number of threads and),,., is the maximum number of In this paper we have proposed a scheduling strategy
gueries allowed to be processes in the bulk-synchronougmodesigned to improve query throughput in a multi-core server
the hybrid strategy changes its operation mode to the Lodat metric-space databases. Our proposal combines fully-as
scheduling strategy. After a time, when the number of taskbronous multi-threaded processing of queries with bulk-
assigned to each thread is low enough, the hybrid strateggnchronous multi-threaded query processing in a shared

VI. CONCLUSIONS
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