
Object Tracking with Occlusion Handling:
Improvements and Performance Evaluation

Pablo Ballesty1, Matı́as Colotto1, Juliana Gambini1,2 and Ezequiel Scaruli1
1 Departamento de Ingenierı́a en Informática, Instituto Tecnológico de Buenos Aires

Av. Madero 399 (C1106ACD) - Buenos Aires - Argentina
2 Departamento de Inegenierı́a en Computación- UNTref- Pcia. de Buenos Aires- Argentina

Email: paulballesty@gmail.com, mcolotto@gmail.com, juliana.gambini@gmail.com, ezequiel.scaruli@gmail.com

Abstract—In this work, an object tracking method based
on contour detection is analyzed, improved and assessed. The
original tracking algorithm is very efficient, even in applications
that require real time processing but it fails in violent illumination
changes and occlusion presence. Further developments on the
original algorithm are presented in order to solve these problems.
It consists in using the HSV color representation to decide if
a pixel belongs to the tracking region. As regards to occlusion
handling, alternative ways are introduced to support obstruction
with different feature objects. The performance evaluation of the
resulting algorithm is carried out with two kinds of tests. The
first one consists in using a specifically designed metric to test its
precision. The latter is a measurement of the method speed.

I. INTRODUCTION

Object tracking techniques is essential in many computer
vision applications including image-based medical diagno-
sis [1], surveillance [2], [3] and robotics [4]. There exist several
methods in the literature for the purpose of object tracking
in image sequences. The level set approach is a powerful
technique and various models have been proposed [5], [6],
[7]. All these methods are based on solving partial differential
equation, they are robust and they allow topology changes,
but their high computational cost is a limitation. Another
type of trackers are those that use two sets of markers to
segment the object of interest and graph-cut [8], [9]. In [10] the
authors introduce a method that can handle partially occluded
objects using a set of markers. They compare the performance
of the algorithm with other published algorithms that deal
with the same problem as [11], [12], [13], [14]. In [15] a
method which estimates the likelihood of the matching residual
between the object representation model and the new candidate
image based on previous matching errors, is presented and it
is robust to occlusion. In [16] Mean-Shift and Kalman filter
are combined for object tracking with occlusion handling,
but all these methods do not work in real time. On the
other hand, there exist several approaches for real time object
tracking, as those based on the analytical derivation of the
Jacobian [17], or learning based methods [18], [19] which
have been applied successfully. There are other, fast tracking
algorithms that are also suitable for real-time requirements,
based on the level set approach but without solving differential
partial equations, as the one proposed by Maška-Matula-
Daněk-Kosuvek in [20]. In the article [21], another level set
formulation is proposed, where the level set is modeled as a
continuous parametric function expressed in a B-spline basis.
In [22], a novel approach of video tracking is proposed using
a fast level set implementation. With this approach, a real time

video tracking based on level set was achieved. However, all
of these methods present convergence problems in presence
of violent illumination changes and occlusion. Shi and Karl’s
procedure is based on the level set approach but it does not
solve partial differential equations. It represents each object
with its contour curve and performs the tracking by adapting
the curve in each frame by switching elements between two
lists of neighboring pixels. One of the main challenges related
with object tracking is occlusion, this problem appears in
situations in which the tracked object moves behind another
one, disappearing from the video for an interval of time. There
are two kinds of occlusion. The first one, where the tracked
object is occluded by another with different features, so the
algorithm loses its position; and occlusion by an object with
similar features, where the tracked object is obstructed with
another of similar features, so the algorithm considers both
of them as the object of interest. Occlusion handling requires
detecting when it occurs. In [23], the authors use two metrics:
the distance between the occluded and the occluding objects,
and the ratio between the area of the occluded object in the
current frame and the mean area along the all frames. This
approach is effective, but has the disadvantage of requiring the
occluding object to be also tracked by the algorithm. In [24],
the contour sizes of the occluded object in adjacent frames are
compared. If the ratio between them is less than a threshold,
occlusion is detected and the contour of the occluded object is
expanded until it includes the occluding object as well. This
method works well however it fails when both objects, the
occluded and the occluding, are being tracked.

The goal of this paper is to improve the object tracking
method proposed by Shi and Karl in [22] and to improve the
occlusion handling method presented in [24]. In addition, a
performance evaluation of the resulting algorithm is carried
out with two kinds of tests. The first one consists in using a
specifically designed metric to test its precision. The latter is
a measurement of the method speed.

This work is composed as follows: in section II The
original algorithm based on switching pixels is described in
detail. In section III-A the proposed improvements in object
representation are presented. In section III-B, a solution to the
convergence problem in occlusion presence, are explained. In
section IV the metrics to measure the performance evaluation,
are shown. In section V, we present the results of the per-
formance evaluation of the implemented algorithm. Finally, in
section VI, conclusions and future works are presented.

II. CONTOUR-BASED TRACKING ALGORITHM

The contour of an object is a closed curve that divides an
image into two sets of pixels, where the inner set represents
the object of interest. Contour-based tracking algorithms find
the edges through diverse characteristics (e.g. color, texture,
etc.). The user initializes the method in the first frame in a
supervised way, then the object is tracked in each frame by
considering the solution for the previous frame as an initial
curve. In this section, the theory of the contour based tracking
algorithms is briefly explained. For more details see [7], [6],
[22], [25].

The contour of an object through a whole video can be
represented as a parametric closed curve

C(s, t) = (x(s), y(s), t) with 0 ≤ s ≤ S,
C(0, t) = C(s, t).

where t is time, and (x(s), y(s)) ∈ Ω where Ω is the domain
of the frame. Then, Ω is divided into two disjoint regions:
Ω−(internal) y Ω+(external), separated by the curve C(s, t). In
the fronts evolution approach, the curve evolves in the normal
direction with a velocity F (s). Then, the curve evolution
equation from an initial curve is given by:

Ct (s, t) =
−→
NC(s,t)F (s)

C(s, 0) = C0(s)

where
−→
NC(s,t) is the unitary vector normal of C (s, t) and

C0(s) is the initial curve. From the space-scale theory ([26],
[27]) we know that when the speed is the curvature, F (s) =

−κ, where κ = ∇ ·
(
∇C
|∇C|

)
, the curve evolution is equivalent

to the applying of a Gaussian filter.

Another option is to represent the curve implicitly as the
zero level set of a function of a greater dimension, known
as level set function. Therefore, C(s, t) = {(x(s), y(s) ∈
Ω | φ(x(s), y(s), t) = 0} where φ(x, y, t) is the level set
function,

φ(x, y, t) < 0 if (x, y) ∈ Ω−

φ(x, y, t) > 0 if (x, y) ∈ Ω+

φ(x, y, t) = 0 if (x, y) ∈ C(s, t).

It can be proven that the evolution of the curve C(s, t)
with velocity F in the normal direction is governed by the
equation:

φt + F |∇φ| = 0
φ(x, y, 0) = C(s, 0)

(1)

The definition of the velocity function F depends on the
specific application. Due to the high computational cost of
calculating a solution of Eq. 1, a different proposal has
appeared in the recent years, which formulates fast algorithms
with another strategy.

The method developed in [22] is based on the exchange of
neighboring pixels between two lists that represent the contour
of the object of interest. The set of M regions to be tracked are
defined: {Ω1,Ω2, . . . ,ΩM}, with Ωi ∩Ωj = ∅ if i 6= j, those

regions are initially chosen by the observer. The background,
{Ω1 ∪Ω2 . . . ,ΩM}C called Ω0 and the set of contours of the
M regions of interest: {C1, C2, . . . , CM}. Each region has an
associated a vector Θi = (θi1, θ

i
2, . . . , θ

i
n), i ∈ {1, 2, . . . ,M},

which contains representative information about the region of
interest. Therefore, it is referred to as the feature vector. An
RGB tuple representing the color of the region is a possible
example of a feature vector. The curve evolution formula is
given by: Ct (s, t) = (Fd +Fs)

−→
NC(s,t), where Fd is the speed

of evolution and Fs makes the curve smooth. In this case,
Fd is given by Fd(x) = log(p(Θi(x) | Ωi/p(Θ

j(x) | Ωj)),
where Θi and Θj are the feature vectors of regions Ωi and
Ωj , respectively, p(Θi(x) | Ωi) is the probability of pixel x
belonging to the i-th region. Fs is given by Fs (x) = −2λκ (x),
where κ is the curvature. The algorithm used is based on the
level set theory. Function φ is defined in the following way:

φ(x) =

3 if x ∈ Ω0 and x /∈ Lout

1 if x ∈ Lout

−1 if x ∈ Lin

−3 if x ∈ Ω1 and x /∈ Lin

where Lin and Lout are pixel sets used to represent the edge of
the region. They correspond to its internal and external edges
respectively. They are defined as: Lin = {x | φ(x) < 0∧∃y ∈
N4(x) | φ(y) > 0} and Lout = {x | φ(x) > 0 ∧ ∃y ∈
N4(x) | φ(y) < 0}, where N4(x) represents the four neighbors
of x N4(x) = {y | |x − y| = 1}. An example of these sets
can be seen in Fig. 1.

Fig. 1. Inner and outer edges of the boundary of a region.

The curve expands or contracts according to the sign of
Fd. At the beginning, φ and the two lists Lin and Lout are
initialized according to a supervised selected region, then two
cycles are performed in each frame. The first cycle adapts the
sets Lin and Lout to the edge of the object. The second cycle
has the objective of obtaining the softening of the curve.

III. IMPROVEMENTS IN OBJECT REPRESENTATION AND
OCCLUSION HANDLING

A. The HSV color representation

The feature vector Θi, i = 1, . . . ,M must be defined. We
represent the object of interest by its color, and we analyze two
different models. An alternative is the use of the RGB com-
ponents with the euclidean norm as similarity measure, which
was developed in the original article (see [22]). However,
this representation model is not robust when there are sudden
illumination changes in the video. Therefore, our proposal is
to use the HSV color model which has the component V
that corresponds to the color brightness. If this component is
not considered in the analysis, two colors which differ only
in brightness are considered the same. This idea solves the

problems arising from sudden illumination changes. Using this
model, a pixel p is denoted by p = (hp, sp) ∈ [0, 1) × [0, 1]
where hp and sp are the hue and saturation components of
HSV color system, respectively. For simplicity, the analysis is
done for a single object tracking. In the HSV representation,
the feature vector of Ω is ΘHSV = (µh, µs) where µh, µs

are the sample means of the hue and saturation components,
respectively, calculated using the initial region. In this case, we
need to use the following function to compute the difference
between two hue values:

hdiff(h1, h2) =

{
|h1− h2| if |h1− h2| ≤ 0.5
1− |h1− h2| if |h1− h2| > 0.5

Therefore, p = (hp, sp) ∈ Ω if
||(hdiff(µh, hp), µs − sp)||1,2 < THSV where THSV is a
tolerance given by the user.

The result of applying the algorithm to a real video using
both the RGB and HSV representations can be seen in Fig. 2
and Fig. 3, respectively. In Fig. 2, it can be observed that the
object of interest produces a shadow in the background and
the method fails in fitting the edge of the leaf. Fig. 3 shows
that HSV color model solves this problem.

Fig. 2. Results of applying the algorithm using RGB Color Model.

Fig. 3. Results of applying the algorithm using HSV Color Model.

B. Occlusion Handling

The occlusion with an object that has different features is
detected by analyzing the contour of the tracked object. If its
size decreases sharply, it means that it is being occluded. This
situation is shown in Fig. 4.

When the tracked object is occluded, one approach to reach
it again is to expand its contour curve until it gets over the
obstacle. This technique is presented in [24] with relatively
good results. The main disadvantage of this way of occlusion
handling is that it does not work well when both objects, the
occluded and the occluding, are being tracked by the algorithm.
This situation is shown in Fig. 5.

To deal with this issue, we propose another technique
that consists in moving the contour of the occluded object
to a new position, which depends on the direction of the
contour movement along the previous frames. It is necessary

(a) Frame 1 (b) Frame 10 (c) Frame 24

Fig. 4. Result of applying the original algorithm in a synthetic video where
occlusion with an object of different features occurs and the original method
fails.

(a) Frame 1 (b) Frame 11 (c) Frame 14

Fig. 5. Problem that occurs when both objects are tracked by the algorithm
and the curve expansion approach is applied (see [24]). The method fails.

to calculate the average displacement ∆i of the tracked object
in frame i. If ck is its center of mass in frame k, then ∆i

can be defined as ∆i = 1
i

∑i
k=1 (ck − ck−1). Once occlusion

is detected in frame m, the curve is moved in the direction
of ∆m, assuming that the tracked object is likely to move in
that direction after it is occluded. So the new position pm+1 of
each pixel of the contour is pm+1 = pm +λ∆m, where pm is
the previous position and λ ∈ < is a factor that indicates how
much the curve is moved in the direction of ∆m. However, it
is necessary that the contour in the new position contains the
object previously occluded, or at least a part of it. To verify
that the contour in the new position contains a part of the
object of interest, a sample of pixels near cm+∆m is taken. If
most pixels belong to the tracked object, the contour is moved.
In another case the movement is not performed, because the
occluded object has moved in another direction. In Fig. 6, the
moment in which the curve movement takes place is illustrated.

(a) Frame 1 (b) Frame 14 (c) Frame 15

Fig. 6. Result of applying the new technique to the video in Fig. 5

IV. METRICS FOR PERFORMANCE EVALUATION

In order to evaluate the performance of our methods, we
use the metrics proposed in [28]. They are based on the
comparison with the ground truth which shows the expected
results of the object tracking obtained manually.

The first metric is (Label Tracking Detection Rate) or
LTDR. It is aimed to determine if the algorithm is capable
of correctly matching the position of the objects of interest. It
is defined as follows:

LTDR =
1

L

L−1∑
i=0

TPM i

OAF i

where L is the number of tracked objects; TPM i is the
number of frames in which the position of the i-th object
obtained by the algorithm matches the position of the ground
truth for the i-th tracked object. OAF i is the number of frames
in which the object is present in the video according to the
ground truth. The position of an object is represented by the
centroid of the region. The value of LTDR belongs to the
interval [0, 1]. A value of 0 means that the algorithm is not able
to track the position of the objects of interest in any frame,
while a value of 1 indicates that the position of all the objects
in every frame is successfully matched with the ground truth.

The second metric is ASDR (Average Size Detection Rate)
which provides information about the ability of an algorithm to
correctly obtain the size of the objects of interest. It is defined
as follows:

ASDR =
1

L

L−1∑
i=0

SDRi

TPM i

where SDRi is the number of frames in which the size of
the i-th region is correctly calculated according to the ground
truth and TPM i is the number of frames in which the i-th
region is in the correct position, according to the ground truth.
The size is calculated using the area of the smallest rectangle
containing the region of interest. The value of ASDR belongs
to the interval [0, 1]. A value of 0 means that the algorithm
is not able to obtain the object size correctly in any frame,
instead a value of 1 means that the obtained object size is
well calculated during the whole video.

In order to determine whether the algorithm runs in real
time or not, we propose calculating the number of frames that it
is able to process in a second. We use the following magnitude:

MPT =
1

N

N∑
i=1

Ti

where Ti is the time spent processing the i-th frame and N is
the number of frames. We also use

FPS =
1

MPT

MPT is the Mean Processing Time, the mean time that the
algorithm takes to perform the tracking in one frame. FPS
represents the mean of the frames per second that the algorithm
is able to track in the video. If FPS is greater than 30, we
consider that the algorithm runs in real time.

V. EXPERIMENTAL RESULTS

In order to test the proposed algorithm it was applied to
several real and synthetic videos. In addition, the method was
tested using the same videos with Gaussian noise added in an
artificial way. For each video, several combinations of features

and criteria are tested. Videos Akiyo, Carphone, Bus, Ice and
Claire are available for download at Xiph.org Video Test Media
[derf’s collection] (http://media.xiph.org/video/derf/). The rest
can be found at http://goo.gl/iFH1d. In 7 out of 11 videos,
64% of the total number, the value of LDTR is greater
than 0.7, so an accurate tracking of the object position is
achieved under certain parameters of the algorithm. In Fig. 7(a)
a comparative chart of LTDR values obtained from these
experiments, is illustrated. Axis y shows the number of videos
and axis x shows the LTDR output value. For example, there
are eigtheen videos where the LTDR output value is between
0.9 and 1. Fig. 7(b) shows a chart of the best values of LTDR
outputs for each video. This chart shows that the new algorithm
achieves a tracking, at least partial, in all the tested videos.

(a) All Experiments (b) Best Experiments

Fig. 7. Comparative chart of LTDR values in each experiment.

With regard to size metrics, the results indicate that the
70% of the experiments show an ASDR value greater than
0.7. This suggests that the method is capable of successfully
detecting the size of the objects in most frames. In Fig. 8(a)
a chart of ASDR values obtained in each experiment is
illustrated. Fig. 8(b) shows a chart of the best values of ASDR
outputs for each video. In both cases, there is a great amount of
values near to 1 which suggests that, using all its alternatives,
the algorithm is able to match the original size in a consistent
way.

(a) All experiments (b) The best ASDR values for each
video.

Fig. 8. Comparative chart of ASDR values in each experiment.

In addition, it can be observed that the algorithm works in
real time in more than a 90% of tested videos. Moreover, it
works in real time in videos in which more than one object
is tracked, and have occlusion handling enabled. Fig. 9(a)
shows a comparative chart of the FPS values obtained from
the experiment. The y-axis represents the number of videos
and the x-axis the FPS values. FPS values greater than
200 are excluded from this graphic, since they correspond to
experiments with non acceptable values of LTDR. Fig. 9(b)

http://media.xiph.org/video/derf/
http://goo.gl/iFH1d

shows the best FPS values for each video. In both charts, it
can be seen that most values suggest a real time tracking.

(a) All experiments (b) Best FPS values obtained for each
video.

Fig. 9. Comparative chart of FPS value in each experiment.

Even for videos that have Gaussian noise applied, the
method is able to successfully track the object with occlusion
handling, however the tracking is slower.

VI. CONCLUSIONS AND FUTURE WORK

This paper deals with a different approach to overcome the
difficulties of the object tracking algorithm. The first proposal
in our approach consists in using the HSV color representation
to decide if a pixel belongs to the tracking region. The second
is a proposal to support obstruction with different feature
objects. In order to evaluate the performance of the algorithm,
three kinds of tests are performed with the resulting algorithm.
We achieve improvements in the results. Several experiments
with test videos validate our approach. The results of the
performance evaluation of the method show that in 70% of the
videos the algorithm fits the object of interest in each frame and
satisfies the real time requirements even in occlusion presence.

As some aspects of future work that arise from this paper,
we have to take into account: an automatic selection of initial
regions, the usage of a less amount of parameters and an
increment of the robustness against the noise present at initial
frames.

REFERENCES

[1] T. Behrens, K. Rohr, and H. Stiehl, “Robust segmentation of tubular
structures in 3-d medical images by parametric object detection and
tracking,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, vol. 33, pp. 554–561, 2003.

[2] W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual
surveillance of object motion and behaviors,” IEEE Transactions on
Systems, Man and Cybernetics, Part C (Applications and Reviews),
vol. 34, pp. 334–352, 2004.

[3] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik, “A real-time
computer vision system for vehicle tracking and traffic surveillance,”
Transportation Research Part C: Emerging Technologies, vol. 6, pp.
271–288, 1998.

[4] V. Baier and F. Sahin, “Detection and tracking of high motion objects
in arm robotics,” in Fifth International Conference on Soft Computing,
Computing with Words and Perceptions in System Analysis, Decision
and Control, ICSCCW, 2009.

[5] S. Osher and J. Sethian, “Fronts propagating with curvature-dependent
speed: algorithms based on hamilton-jacobi formulations.” Journal of
Computational Phisics, vol. 79, pp. 12–49, 1988.

[6] J. Sethian, “Fast marching methods and level set methods for propagat-
ing interfaces von karman insitute lecture series,” 1998.

[7] S. Zhu and A. Yuille, “Region competition: Unifying snakes, region
growing and bayes/MDL for multiband image segmentation,” IEEE
Transaction on Pattern Anal. and Machine Intelligence, vol. 18, no. 9,
pp. 884–900, 1996.

[8] A. Protiere and G. Sapiro, “Interactive image segmentation via adap-
tative weighted distances,” IEEE Transactions on Image Processing,
vol. 16, pp. 1046–1057, 2007.

[9] S. Vicente, V. Kolmogorov, and C. Rother, “Graph cut based image
segmentation with connectivity priors,” in Computing Vision and Pattern
Recognition, 2008.

[10] R. Minetto, T. V. Spina, A. X. Falao, N. J. Leite, J. Papa, and J. Stolfi,
“Iftrace: Video segmentation of deformable objects using the image
foresting transform,” Computer Vision and Image Understanding, vol.
116, pp. 274–291, 2012.

[11] D. Zhong and S. Chang, “Long term moving object segmentation and
tracking using spatio-temporal consistency,” in International Conference
on Image Processing (ICIP), 2001.

[12] D. William and M. Shah, “A fast algorithm for active contour and curva-
ture estimation,” Computing Visualization Graphics Image Processing:
Image Understanding, vol. 55, pp. 14–26, 1992.

[13] J. Allen, R. Xu, and J. Jin, “Object tracking using camshift anlgorithm
and multiple quantized features spaces,” in Australian Computer Soci-
ety, 2004.

[14] R. Hess and A. Fern, “Discriminatively trained particle filters for
complex multi-object tracking,” in Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2009.

[15] H. Firouzi and H. Najjaran, “Robust pca-based visual tracking by adap-
tively maximizing the matching residual likelihood,” in International
Conference on Computer and Robot Vision (CRV), 2013, pp. 52–58.

[16] G. Phadke and R. Velmurugan, “Improved mean shift for multi-target
tracking,” in IEEE International Workshop on Performance Evaluation
of Tracking and Surveillance (PETS), 2013, pp. 37–44.

[17] S. Benhimane and E. Malis, “Homography based 2D visual tracking
and servoing,” Int’l J. Robotics Research, vol. 26, pp. 661–667, 2007.

[18] S. Holzer, S. Ilic, and N. Navab, “Multilayer adaptive linear predictors
for real-time tracking,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 35, pp. 105–117, 2013.

[19] L. Xiaohui and L. Huchuan, “Object tracking based on local learning,”
in IEEE International Conference on Image Processing (ICIP), 2012.

[20] M. Maska, P. Matula, O. Daněk, and M. Kozubek, “A Fast Level Set-
Like Algorithm for Region-Based Active Contours,” Proceedings of the
6th International Symposium on Visual Computing, vol. LNCS 6455,
pp. 387–396, 2010.

[21] O. Bernard and D. Friboulet, “Fast medical image segmentation through
an approximation of narrow-band B-spline level-set and multiresolu-
tion,” in IEEE International Symposium on Biomedical Imaging: From
Nano to Macro, 2009. ISBI ’09., 2009, pp. 45–48.

[22] Y. Shi and W. Karl, “Real-time tracking using level sets,” in IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition,
vol. 2, 2005, pp. 34–41.

[23] H. Yilmaz and M. Shah, “Contour-based object tracking with occlusion
handling in video acquired using mobile cameras,” IEEE Trans. Patt.
Analy. Mach. Intell., vol. 26, pp. 1531–1536, 2004.

[24] J. Gambini, D. Rozichner, M. E. Buemi, M. Mejail, and J. Jacobo-
Berlles, “Occlusion handling for object tracking using a fast level set
method,” in SIBGRAPI, 2008, pp. 61–68.

[25] Y. Shi and W. Karl, “A real-time algorithm for the approximation of
level-set-based curve evolution,” Image Processing, vol. 17, no. 5, pp.
645–656, May 2008.

[26] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990.

[27] J. Weickert, Anisotropic Diffusion in Image Processing, 1st ed.
Teubner-Verlag, 1998.

[28] J. Popoola and A. Amer, “Performance evaluation for tracking al-
gorithms using object labels,” in IEEE International Conference on
Acoustics, Speech and Signal Processing, 2008.

	Introduction
	Contour-based tracking algorithm
	Improvements in Object Representation and Occlusion Handling
	The HSV color representation
	Occlusion Handling

	Metrics for Performance Evaluation
	Experimental Results
	Conclusions and future work
	References

